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time-to-death curves for combat
casualty deaths in Iraq and Afghanistan

Edwin D’Souza, Ross Vickers, James Zouris, Vern Wing
and Michael Galarneau

Abstract
The United States Department of Defense medical planners need survival-time estimates for anticipated patient streams
associated with projected combat scenarios. Survival-time estimates should be grounded in empirical observations.
Unfortunately, research in this domain has been limited to a single paper describing the development of died-of-wounds
curves for combat casualties with life-threatening injuries. The curves developed from that research were based on a
small dataset (n = 160, with 26 deaths and 134 survivors) of forward surgical (Role II) casualties and subject matter
experts’ judgments. This paper reports the first empirically based time-to-death curves for combat casualties based on a
large sample. The results indicate that survival time varied across roles of care at which casualties died but was at most
weakly associated with injury severity. Time-to-death curves were, therefore, developed for the overall study population
of valid times to death and for Role I, Role II and Role III care. The log-logistic probability distribution provided the best
representation of the survival times for the overall study population, while the log-normal distribution was the best
choice for Role I, Role II and Role III care. The proposed time-to-death curves should refine the survival-time estimates
used in combat medical logistics planning.
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1. Introduction

The United States Department of Defense (DoD) medical

planners need logistics tools to plan for projected combat

scenarios. These tools must optimize the configuration of

the medical treatment facility (MTF) network within com-

bat zones. Optimization depends on appropriate facility

locations and availability of staff, equipment, supplies and

evacuation assets at each MTF. Successful optimization

ensures that combat casualties receive appropriate treat-

ment as quickly and cost-effectively as possible.

The MTF network design has a hierarchical structure

with casualties moving from point of injury (POI) to first-

responder care (Role I), forward-resuscitative care (Role

II), theater hospitalization (Role III) and definitive care

(Role IV).1 Medical care capabilities increase as the casu-

alty moves through the network. Medical resource plan-

ning must ensure that facilities have the resources to fulfill

their planned functions.

Sound casualty stream projections are essential to effec-

tive medical logistical planning. The casualty stream is

characterized by the case mix of casualties and its evolu-

tion over time. The types of injury requiring treatment

determine the case mix. Logistics planning uses simulation

tools to estimate case mix and the distribution of those

cases over time. Resource requirements estimates are

derived by combining those estimates with treatment pro-

tocols that specify the types of care and resources needed

to treat each injury or illness.

Naval Health Research Center, Medical Modeling, Simulation and Mission

Support Program, USA

Corresponding author:

Edwin D’Souza, Dept 161, Naval Health Research Center, 140 Sylvester

Road, San Diego, CA 92106, USA.

Email: edwin.dsouza@med.navy.mil

 by guest on March 18, 2015dms.sagepub.comDownloaded from 



Definitive survival-time estimates are not currently

available for casualty stream projections. Ideally, these

estimates should be based on empirical survival evidence.

Empirically based estimates accurately reflect events as

they occur in combat operations. Unfortunately, research

in this domain has been limited. A literature review identi-

fied only a single paper,2 which presented survival curves

for combat trauma casualties with life-threatening injuries.

Those curves were based on a small dataset (n = 160, with

26 deaths and 134 survivors) of Role II casualties. Subject

matter experts (SMEs) imputed missing evacuation times

in about 38% of the survivor cases. Nevertheless, the sur-

vival curves in the paper reflected the empirical data of

early combat operations in Iraq as well as the experiences

of military medical doctors.3

This paper reports the development of empirically

based time-to-death curves for combat trauma casualties

based on a large sample. The curves are based on deaths

in Iraq and Afghanistan combat operations between 2002

and 2011. These analyses address three questions concern-

ing the time from injury to death: What is the overall

time-to-death curve? Does injury severity affect the curve?

Is the curve the same for all treatment roles of care?

2. Methods

This study was conducted in compliance with all applica-

ble federal regulations governing the protection of human

subjects in research and was approved by the Institutional

Review Board at the Naval Health Research Center

(NHRC), San Diego (Protocol No. NHRC.2003.0025).

2.1. Data source

A total of 4491 electronic casualty death records are stored

in the Expeditionary Medical Encounter Database

(EMED), formerly known as the Navy-Marine Corps

Combat Trauma Registry,4 at the NHRC. These records

cover Iraq and Afghanistan combat operations between

March 2002 and March 2011.

Figure 1 depicts the selection criteria for casualties in

this study. Casualties with times to death of zero (n =

1183) were excluded from this study. Casualties were

excluded if time to death could not be determined from the

record (missing, n = 225). Casualties were excluded when

the recorded times produced a negative time to death (n =

128). Casualties were excluded if they died more than 72

hours after injury (n = 104). Those exceptionally long

times might be influential data points that would distort the

functional form for the large majority of casualty deaths.

With these exclusions, the final study population consisted

of 2851 casualties for whom valid time-to-death estimates

could be computed.

2.2. Time to pronounced death

The record for each fatality indicated the time of injury

and the time of pronounced death. The time to pronounced

death was computed as the difference, in minutes, between

the time of injury and time of pronounced death. It would

be expected that the actual time of death in Roles II and

III would be the same as the pronounced time of death but

not in Role I, where a medical doctor was not generally

present and the death would only be pronounced after eva-

cuation to the next role of care was completed.

2.3. Injury severity

The electronic records described all of the injuries suffered

by each casualty. The severity of injuries was described

using the Abbreviated Injury Scale (AIS),5 originally

developed to score blunt injuries from automobile acci-

dents.6 Over time, the AIS system has evolved to code

blunt and penetrating injuries in both civilian and combat

trauma. The current AIS version (AIS 2005 Update 2008)7

contains over 2000 codes. Each code consists of six digits

that indicate the anatomic site and nature of the injury and

a seventh digit that indicates injury severity. Severity

scores range from ‘‘1’’ for minor injury to ‘‘6’’ for an

untreatable injury that generally will result in death.

In this study, injury severity classification was based on

the most severe injury. This simple method was adopted to

deal with the fact that over 97.5% of combat death casual-

ties suffered multiple injuries. The severity score for the

most severe injury is the maximum AIS score (MaxAIS).

MaxAIS has been shown to be strongly correlated with

mortality8 and predicts fatality nearly as well as more

complex systems that combine the effects of multiple

injuries.9–15

2.4. Role of care

MTFs provide four roles of care based on the medical

resources available at a facility. First-responder care

(Role I) consists of immediate medical care, resuscitation

and stabilization. Role I trauma casualties requiring more

extensive treatment are evacuated to a higher role of care,

usually within minutes. Forward-resuscitative care

(Role II) provides a higher capability for the triage, stabili-

zation and treatment of shock. A typical Role II facility

also provides damage-control surgery and recovery facili-

ties for casualties before they are returned to duty (RTD)

or evacuated. In-theater hospitalization care (Role III) is a

full-fledged field hospital or hospital ship. Role III facili-

ties provide all surgical specialties, advanced emergency,

intensive care unit and ancillary services. Role III is the

highest level of care in theater. Finally, definitive care is

received at Role IV facilities after evacuation from the
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combat theater of operations. Role IV provides a full spec-

trum of preventative, curative and rehabilitative medical

services.

It should be noted that not all patients proceed linearly

through the roles of care. They may in fact present for first

care at any role of care and frequently do as a function of

mode of evacuation, the proximity of the POI to a given

MTF, and other factors.

For this study, the role of care at which a casualty died

was determined by matching the casualty’s death date and

time with the appropriate record in the Theater Medical

Data Store (TMDS) repository. The TMDS is the most

comprehensive registry of patient treatment and flow

through the MTF network. This study analyzed fatalities in

four groups: (a) all casualties with valid times to death (n =

2851); (b) casualties who died at Role I care (n = 38); (c)

casualties who died at Role II care (n = 244); and (d) casu-

alties who died at Role III care (n = 588). The role-level

analyses could be performed for only 30.5% of the study

population fatalities (19.4% of total fatalities) because role

of care at time of death could not be determined for the

study population’s other fatalities (see Figure 1). The 1963

fatalities (69%) that could not be assigned a role of care

were primarily casualties killed on the battlefield that did

not receive any medical care.16

2.5. Statistical analysis

The statistical analyses addressed three questions: (a)

What is the overall time-to-death curve? (b) Does injury

severity affect the curve? (c) Is the curve the same for all

treatment echelons or roles of care?

2.5.1. Survival-time analyses. Survival-time analyses tested

for survival-time differences as a function of injury sever-

ity and as a function of role of care. Kaplan–Meier (K-M)

estimators provided the hypothesis tests. Survival probabil-

ity was plotted against time to death. A log-rank statistical

test assessed differences among the time-to-death curves

for different groups. Separate tests assessed survival-time

differences as a function of injury severity and role of care.

Figure 1. Flow diagram documenting selection criteria used for identifying study population for analysis.
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The tests included pair-wise comparisons between groups.

Tukey’s method17 adjusted significance tests to allow for

multiple comparisons.

2.5.2. Survival-time modeling. Using survival-time modeling,

mathematical functions were developed to approximate the

observed survival-time distributions. The available litera-

ture18 suggested that time to death is a monotonically

declining survival function. However, the available infor-

mation is too limited to confidently state the form of that

function. Consequently, five candidate Accelerated

Failure Time models18—exponential, weibull, log-normal,

log-logistic and generalized gamma—were fitted to the

data using maximum likelihood procedures. Each model

was a variant of Equation (1):

log Ti =β0 + σεi ð1Þ

Ti is a random variable denoting the time to pro-

nounced death, β0 is the intercept, εi is a random distur-

bance term and σ is a ‘‘scale’’ parameter that describes the

shape of the modeled hazard function. The mean and var-

iance of εi is constant from some distribution and σ repre-

sents changes in the disturbance variance. Observations

are assumed to be independent of each other. Model

choice determines the functional form of the model. For

example, the distribution of εi is normal for the log-normal

model, logistic for the log-logistic model and log-gamma

for the generalized gamma model. Exponential distribu-

tions have a standard extreme-value distribution for εi with

σ = 1. Like the exponential distribution, the weibull distri-

bution has an extreme-value distribution for εi but the

scale parameter σ is not 1 but greater than zero.

The optimal time-to-death curve function was identified

using two criteria: (a) how well the modeled cumulative

hazard approximated the empirical K-M cumulative hazard

function;19 and (b) the Akaike information criterion

(AIC).20 Criterion (a) was based on the residual sum of

squares (RSS) of the modeled cumulative hazard and the

empirical K-M cumulative hazard, and a visual inspection

of the time plot of the difference of the cumulative hazards.

When the criteria supported different models, criterion (a)

determined the final model selection.

Data management and statistical analyses were carried

out using SAS software, Version 9.3 (SAS Institute, Cary,

North Carolina).

3. Results
3.1. Injury severity

All of the casualties suffered at least one serious injury

(MaxAIS ≥ 3). However, most of the casualties suffered

more severe injuries. Injury severity distributions

were broadly comparable for the full sample and the

role-specific casualty subsets (Table 1). However, the sever-

ity distributions for Roles I, II and III differed from the dis-

tribution for cases whose role of care at time of death could

not be determined from the records. A two-way classifica-

tion of cases by severity and role demonstrated that the dif-

ferences among the four groups were small, but statistically

significant (w2 = 78.17, 9 df, p < .001).

The group differences were significant only when com-

paring unknown role cases and the known role cases. The

Role I, II and III differences were trivial and not statisti-

cally significant (w2 = 6.25, 6 df, p = .396).

A higher proportion of MaxAIS = 6 injuries was the

primary difference between the unknown role cases and

the known role cases. The severity distribution for the

unknown role of care included 90 more MaxAIS = 6 cases

than expected (w2 = 13.26, 1 df, p < .001). This difference

contrasted with fewer than expected cases for MaxAIS = 3

(9 cases, w2 = 1.26, 1 df, p = .262), MaxAIS = 4 (52 cases,

w2 = 6.11, 1 df, p = .013) and MaxAIS = 5 (28 cases, w2 =

0.93, 1 df, p = .335).

The known role severity distributions reversed the

unknown role severity profile. Those distributions had

fewer than expected MaxAIS = 6 cases and more than

Table 1. Maximum injury severity (MaxAIS) distribution.

Characteristic No. (%)

Total sample
3 – Serious 89 (3.1)
4 – Severe 644 (22.6)
5 – Critical 1246 (43.7)
6 – Untreatable 869 (30.5)
Missing 3 (0.1)

Role I
3 – Serious 3 (7.9)
4 – Severe 7 (18.4)
5 – Critical 18 (47.4)
6 – Untreatable 10 (26.3)

Role II
3 – Serious 6 (2.5)
4 – Severe 77 (31.6)
5 – Critical 114 (46.7)
6 – Untreatable 47 (19.3)

Role III
3 – Serious 27 (4.6)
4 – Severe 165 (28.1)
5 – Critical 277 (47.1)
6 – Untreatable 119 (20.2)

Role uncertain
3 – Serious 52 (2.6)
4 – Severe 391 (19.9)
5 – Critical 826 (42.1)
6 – Untreatable 691 (35.2)
Missing 3 (0.2)

Note: Injury severity distributions for the total casualty sample

(n = 2851) and for Role I (n = 38), Role II (n = 244), Role III (n = 588), and

Role uncertain (n = 1963) casualty subsets.
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expected MaxAIS = 3, MaxAIS = 4 and MaxAIS = 5

cases. On the whole, the differences reflect a lower than

expected frequency of MaxAIS = 6 cases in the popula-

tions representing known roles of care.

3.2. Time to pronounced death

Figure 2 displays a histogram of the pronounced

death times for the 2851 casualty deaths. Approximately

65% of casualties died within 2 hours from the POI and

about 82% of casualties died within 4 hours from the POI.

Ninety-five percent of all casualty deaths occurred within

about 10 hours, with a median time to death of about 75

minutes.

Detailed examination of the time-to-death data indi-

cated two points of interest (Table 2). Firstly, the distribu-

tions were severely skewed. The skew evident in Figure 2

applied to the data from all three roles of care. The role-

specific skew is evident in median times that are less than

the mean and in standard deviations that equal or exceed

the mean. The differences between roles of care provided

the second point of interest regarding the time-to-death dis-

tributions. The median survival time increased from Role I

to Role III (Table 2). The differences were modest, but sta-

tistically significant as evidenced in the ‘‘Role’’ section of

Table 3.

3.3. Hypotheses tests

The results of the three hypotheses tests conducted are

shown in Table 3 and the associated time-to-death K-M

curves are displayed in Figures 3 and 4. For the first

hypothesis test, we rejected the null hypothesis that sur-

vival time was independent of the role of care at which

patients died (P = 0.001). The Role I time-to-death curve

in Figure 3 is erratic and overall higher than the Role II

curve, which is counterintuitive, while the Role II and

Role III curves behave as expected. This may be due to

the small casualty death counts at Role I and the fact that

not all casualties proceed linearly through the roles of care

Figure 2. Histogram of valid times to pronounced death for
the entire study population (n = 2851).

Table 2. Statistics of times to death (in minutes).

Role of care N (%) Mean Median Std dev Min Max IQR 95th percentile

Role I 38 (1.3) 130.2 60.5 142.7 11 495 217 495
Role II 244 (8.6) 94.6 64.0 93.2 2 753 68 278
Role III 588 (20.6) 158.1 73.0 267.9 1 2296 101 575
Unknown 1963 (68.9) 181.1 80.0 365.5 1 4312 155 585
Total 2851 (100.0) 185.1 76.0 401.0 1 4312 136 628

Note. 18 (0.6%) Role IV cases were excluded from analysis.

IQR: interquartile range.

Figure 3. Comparison of Role I, Role II and Role III Kaplan–
Meier time-to-death curves (n = 870).
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such that higher levels of care may well be seeing a

skewed injury sample.

For the second hypothesis test, injury severity was

weakly associated with survival time (P = 0.03), but pair-

wise comparisons showed no significant associations. As

shown in the total study population plot in Figure 4, only

the MaxAIS 3 curve (n = 89 [3%]) was visually distinct

from the other curves. The curves for MaxAIS 4, MaxAIS

5 and MaxAIS 6 were so similar that the time required to

reach 50% probability of survival was almost identical (75

minutes) for each of them, and the time required to reach

30% probability of survival never differed by more than

22 minutes. Ignoring 4% of data at the extreme end of the

tails, the maximum difference was 63 minutes for the

MaxAIS 4 and MaxAIS 6 curves at 12% survival

probability.

Finally, for the third hypothesis test, we failed to reject

the hypothesis of independence between survival time and

injury severity within in-theater roles of care (P = 0.16 for

Role II and P = 0.09 for Role III). There were no signifi-

cant associations between the survival time and injury

severity for any of the six pair-wise comparisons at Role

II and Role III care. Role I was not considered for this

hypothesis test because of low counts (n = 38). The Role

II and Role III plots in Figure 4 show the K-M time-to-

death curves by injury severity for Role II and Role III,

respectively. Interestingly, for Role II we see that all the

MaxAIS 3 patients (n = 6) die faster than the rest with all

the MaxAIS 3 deaths occurring within 300 minutes.

3.4 Survival-time functions

Four sets of survival-time distribution models were exam-

ined. One set was based on the entire sample of valid times

to death (n = 2851). The other three sets were based on

deaths that occurred at Role I, Role II and Role III care.

Injury severity was ignored because survival time was not

significantly associated with severity.

Tables 4 and 5 provide two sets of model-fit statistics

for the five candidate survival-probability distributions: (a)

RSS for the modeled and empirical K-M cumulative

hazard functions (Table 4); and (b) AIC (Table 5). To

exclude influential outlier data points, the RSS statistics

were computed based on the times to death within the 95th

percentile limit for all groups except Role I care, which

was based on times within 4 hours from the POI. The log-

logistic model provided the best summary of the time-to-

death distribution for the entire sample (regardless of role

of care) based on RSS, the time plot of the difference in

cumulative hazards (Figure 5) and the AIC statistic. The

log-normal model was the best choice for role-specific

models. In choosing the log-normal model for Role I, Role

II and Role III care, the RSS statistic and the associated

time plot of the difference in modeled and empirical K-M

cumulative hazards (Figure 5) were weighted more heavily

than the AIC statistic.

The chosen survival functions (Table 6) closely

approximated the actual time-to-death distributions. The

total study population plot in Figure 6 illustrates this point

by comparing the empirical K-M survival function with

the log-logistic function for time to death (t) for all casu-

alty deaths in the study regardless of role of care. The

Role I, II and III plots in Figure 6 provide similar compari-

sons for the log-normal curves for Roles I, II and III,

respectively. The location of the actual times to death rela-

tive to the function is the critical point in these compari-

sons. All of the curves demonstrate accurate predictions of

observed times to death. The K-M survival function illus-

trates that this accuracy is achieved despite gaps in the

dataset. Those gaps, each of which is indicated by a pla-

teau in the K-M function, identify time periods during

which no deaths were observed in this study.

The role-specific curves that would be used in logistics

simulations are plots of the general log-normal function:

S tð Þ= 1� F
log tð Þ � b0

b1

� �
ð2Þ

Table 3. Impact of role and injury severity on survival time.

Hypothesis Statistical test w2 p-value

1. Role Log-rank 13.3 0.001*

I vs. II 9.9 0.005*

I vs. III 7.5 0.017*

II vs. III 13.3 0.001*

2. Injury severity Log-rank 8.9 0.03*

3 vs. 4 2.7 0.35
3 vs. 5 2.9 0.33
3 vs. 6 1.4 0.65
4 vs. 5 0.0 1.00
4 vs. 6 0.1 0.99
5 vs. 6 0.2 0.98

3. Severity × role
a. Role II Log-rank 5.2 0.16

3 vs. 4 2.3 0.42
3 vs. 5 3.1 0.29
3 vs. 6 1.0 0.75
4 vs. 5 4.1 0.18
4 vs. 6 3.1 0.29
5 vs. 6 0.6 0.87

b. Role III Log-rank 6.6 0.09
3 vs. 4 1.3 0.67
3 vs. 5 0.0 1.00
3 vs. 6 6.0 0.07
4 vs. 5 0.4 0.91
4 vs. 6 0.7 0.84
5 vs. 6 2.2 0.45

*Indicates statistically significant difference using experiment-wise Type I

error (alpha) of 5%.
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The j term is the cumulative distribution function for

the standard normal distribution. The equation treats the

log-transformed survival times as normally distributed

with an average of b0 and a standard deviation of b1. The

functions start at one and decline toward zero over time.

The b0 intercept parameter determines the mean survival

time. The b1 scale parameter determines the rate of

decline. The function drops more rapidly for smaller b1

Figure 4. Comparison of time-to-death curves by injury severity (MaxAIS) for entire study population (n = 2851), Role II (n = 244)
and Role III (n = 588).

Table 4. Alternative models for survival-time functions based on residual sum of squares (RSS) of modeled and empirical Kaplan–
Meier cumulative hazard functions.

Residual sum of squares (RSSa)

Level of care Exponential Weibull Log-normal Log-logistic Gamma

Role I 0.790 0.522 0.398 0.398 NAb

Role II 3.232 4.010 0.797 1.243 1.231
Role III 20.646 12.723 3.043 4.281 3.093
All roles 44.654 23.264 4.968 0.934 4.053

aThe smaller the RSS, the better the model fit.
bNot computed due to lack of convergence of maximum likelihood estimates.
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values. Thus, rate of decline is greatest for Role II (b1 =

0.832), followed by Role III (b1 = 1.124) and Role I (b1 =

1.187), as shown in Table 6. The Role I rate of decline for

the survival function would be expected to be steeper than

that of Role II and the unusual behavior of the curve may

be attributed to the low casualty counts for Role I (n = 38).

Figure 5. Comparison of the difference between the Kaplan–Meier empirical cumulative hazard and the modeled cumulative
hazard for the entire study population (n = 2851), Role I (n = 38), Role II (n = 244) and Role III (n = 588).

Table 5. Alternative models for survival-time functions based on Akaike information criterion (AIC).

Akaike information criterion (AICa)

Level of care Exponential Weibull Log-normal Log-logistic Gamma

Role I 126.4 127.9 124.9 128.4 NAb

Role II 656.3 642.8 606.8 598.1 607.5
Role III 1977.5 1941.5 1809.9 1772. 9 1811.9
All roles 10,641.0 10,078.4 9601.1 9502.4 9592.8

aThe smaller the AIC statistic, the better the model fit.
bNot computed due to lack of convergence of maximum likelihood estimates.
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For simulations of casualty deaths in the overall popula-

tion regardless of the role of care, the log-logistic survival

function in Equation (3) can be employed:

S tð Þ= 1

1+αtγ
ð3Þ

where α= e
�b0=b1

� �
and γ= 1=b1

The b0 intercept parameter determines the mean of the

log-transformed survival times while the b1 scale para-

meter determines the rate of decline of the survival func-

tion. The function drops rapidly for smaller b1 values.

Parameter values for the function are b0 = 4.368 and b1 =

0.713 (Table 6).

Figure 6. Empirical Kaplan–Meier survival estimates overlaid with log-normal curves for the entire study population (n = 2851),
Role I (n = 38), Role II (n = 244) and Role III (n = 588).

Table 6. Parameters of the best-fitting functions.

Estimate Standard error 95% Confidence limits

Full samplea

b0 4.368 0.023 4.323 4.413
b1 0.713 0.011 0.691 0.735
Role Ib

b0 4.233 0.193 3.855 4.610
b1 1.187 0.136 0.948 1.486
Role IIb

b0 4.208 0.053 4.104 4.313
b1 0.832 0.038 0.762 0.909
Role IIIb

b0 4.383 0.046 4.292 4.474
b1 1.124 0.033 1.061 1.190

aLog-logistic model.
bLog-normal model.
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4. Discussion

This study was undertaken to develop empirically based

time-to-death curves for use in estimating times to death in

medical care simulations. The evidence indicates that sur-

vival time varies across roles of care, but was at most

weakly related to injury severity. These observations sug-

gest that modeling should incorporate role of care differ-

ences and that a single model could be applied to all deaths

regardless of injury severity. Survival-time modeling indi-

cates that log-normal models provided accurate time-to-

death predictions for all three roles of care. A log-logistic

model would effectively simulate times to death for the

overall study population, regardless of role of care.

Survival time was independent of injury severity. This

initially surprising result is reasonable if a clear distinction

is made between death rate and survival time. More severe

injuries produce more fatalities in civilian trauma cases21

and combat trauma casualties.22 Indeed, this association is

fundamental to injury severity scaling.11 However, it takes

time for trauma victims to expire, regardless of injury

severity. The evidence suggests that among combat casual-

ties the time-to-death distribution is independent of sever-

ity even though higher severity is positively correlated

with an increased probability of death.

The time-to-death curve models developed above share

a critical attribute in that observed survival times were

estimated with high precision. Actual data times seldom

fall far from the curve. This is more important than the

fact that the models did not track the K-M step function

with precision. The step function is constant over intervals

that contain no deaths, whereas the curves treat time as the

continuous function that it is. In the absence of reasons to

believe that the survival-time distribution truly is a step

function, the smooth, monotonically decreasing curves are

a reasonable formulation of the time to death.

The modest increase in median time to death from Role

I to Role III was noteworthy. Increased survival would be

expected given that more extensive treatment options are

available at higher roles of care. In fact, the modest size of

the increases is more striking than their existence. The dif-

ference implies better quality care at higher roles given

the virtually identical injury severity distributions across

roles of care. The modest differences therefore might be

misinterpreted as evidence that quality of care increases

only slightly from Role I to Role III. This inference would

not be justified because the data are limited entirely to

fatalities. The proportion of survivors at each level of care

increases without necessarily altering the time-to-death

distributions.

The good fit of the functional models suggest that they

accurately predict times over the full range of the data.

This point is important in light of the gaps in the time dis-

tributions evident in the K-M plots. The good fit to the

observed data make it reasonable to believe that the

empirical functions will extrapolate well to the empirically

vacant time periods.

Study limitations should be kept in mind when asses-

sing the results. The data do not indicate the casualty’s

history in the MTF network, that is, whether the casualty

passed through some or all roles of care in the network

before expiring at a given role of care. This lack of history

makes it impossible to examine the efficacy of the roles of

care in terms of mortality.

The role-linked cases may be biased. These included

relatively few MaxAIS = 6 cases, which may be reasonable

when considered in context. Some seriously injured casual-

ties must survive only briefly and may often expire before

reaching care. Assuming these cases are never linked to a

specific role of care, the frequency of MaxAIS = 6 cases

will be higher in the overall combat casualty population

than in the treated casualty population. This explanation

for the apparent bias is reasonable, but it is speculative

without further evidence.

Sparse data presented some problems. Very few deaths

were linked to Role I care, so the time-to-death function

for the role must be viewed with caution. The low fre-

quency may be explained by evidence that almost all seri-

ously wounded patients are evacuated directly from the

POI to Role II or Role III facilities in current operations.

If so, uncertainty regarding Role I survival times can be

tolerated because those times are relatively unimportant

for overall medical planning. Gaps in the survival-time

distributions that were evident in the K-M analysis were

another instance of sparse data. The good fit of the data to

the empirical time-to-death curves suggests that those

curves will perform adequately when interpolated into the

gaps, but the possibility that additional data would shift

the curves cannot be ruled out.

The data available to compute survival time was

another limitation. The requisite information was missing

from many records, and the data that were available may

be biased. The recorded time of death is the time the casu-

alty was pronounced dead by a physician. This reported

time will be later than the true time of death whenever the

physician is not present when the casualty dies. Finally,

casualties treated at higher roles of care are a mixture.

Some casualties progress from lower roles to higher ones,

but recent studies show that patients are being evacuated

from the POI to the nearest surgical MTF. The 15% of

casualty deaths at Role II and Role III care that occurred

within 30 minutes from the POI suggest that many patients

do not go through a hierarchical treatment process.

Changes in the proportion of direct admissions might sig-

nificantly alter the survival-time functions reported here.

For future work, we propose that the combat time-to-

death curves be updated as more data from combat opera-

tions become available. The availability of the role of care
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at which casualties died and the time of arrival at the role

of care will further reduce bias in estimating the survival

functions.

The temporal distribution of deaths among combat casu-

alties can be accurately estimated from time-to-death

curves. Accurate estimates of time to death are important

for combat medical planners. Prior to this study, the data

available to formulate those estimates was limited. The pres-

ent work capitalized on recent developments in the medical

data collection and communication networks for combat

operations in Iraq and Afghanistan that have resulted in a

much larger database for estimating survival time. The

results substantially extended the state of the art, providing

greater precision in parameter estimates of the curves and

the resulting time-to-death estimates for individual casual-

ties. These time-to-death curves should refine the survival-

time estimates used in combat medical logistics planning.
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